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ABSTRACT 

Innovation in technology enables people to communicate, share information and 

look for their needs by just sitting in rooms and going through some clicks. While social 

media has played a very important role in connecting people worldwide, its potential has 

stretched beyond the innovative idea of connecting people through their social networks. 

While many thought there was no meeting point for the healthcare sector and social 

media, it was a surprise when research and innovations have shown that social media 

could lay a very significant role in the health care sector.  

Research has been done in developing models that could use social media as the 

data source for tracking diseases. Most of these analyses are based on models that 

prioritize strong correlations with seasonal and pandemic kinds of diseases over the 

health conditions of a specific individual user.  

The aim of this research is to develop a diabetes detecting tool at the individual 

level using a sample of Twitter IDs that have been collected from the Twitter search 

using the query –‘recently diagnosed’ and ‘diabetes’.  Based on text analysis of social 

media posts using Fisher’s exact test, without any medical settings, this thesis 

investigates the feasibility of diagnosing and classifying diabetes via machine learning 

techniques, Naive Bayes and Random Forest classifiers. It was found that more than half 

(20/30 ≈ 67%) of the users in the sample mentioned being tested positive for diabetes, 

about 27% (8/30) of the users mentioned the symptoms and got involved in diabetes 

related discussions, but did not mention about being tested positive and rest 4% had no 

mention of symptoms or diabetes. 
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1. INTRODUCTION 

This section begins by stating the problem description and motivation for 

conducting this research. This is followed by the main research question and a very brief 

outline of the proposed research approach. The section closes with an outline of this 

thesis along with the major research contributions. 

 

1.1 PROBLEM DESCRIPTION 

A human body consumes energy to perform different daily tasks. The source of 

this energy is the food that is consumed. An organ called the pancreas, in a human body, 

lying near the stomach, produces a hormone called insulin, which helps glucose to reach 

all the cells of a human body. Diabetes is a metabolic disease, in which either the body 

fails to make sufficient insulin or cannot utilize the insulin the way it should, which in 

return causes sugar to build up in the body. Diabetes, if not controlled, causes 

complications and effects heart, nerves, eyes, feet and kidneys [1]. 

The early common symptoms of diabetes include [2]: 

 Frequent urination 

 Feeling very thirsty 

 Frequently feeling hungry 

 Extreme fatigue 

 Blurry vision 

 Cuts/bruises that are slow to heal 

 Weight loss - even though a person eats more (type 1) 

 Tingling, pain, or numbness in the hands/feet (type 2)  
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According to statistics, approximately 366 million people suffer from diabetes 

and it is estimated that by the end of 2030, the count will rise to 552 million. It is a 

known fact that an early diagnosis of diabetes can help prevent progression to later 

complications. Research states that about 183 million people presently have diabetes and 

are unaware of it. One of the types of diabetes, type 2, can be evident in people for about 

9 – 12 years without their knowledge and can cause complications during treatment. 

Early detection of diabetes is crucial for active management for people who have 

been newly diagnosed and have not developed complications yet [3]. It is unlikely to 

expect everybody to be aware of the early symptoms of diabetes and visit a doctor. 

However, in today’s world, according to “Worldwide Social Network Users: 2013 

Forecast and Comparative Estimates”, approximately one in four people across the globe 

use social networks, and this number is believed to have risen from 1.47 billion in 2012 

to 1.73 billion in 2014, with an estimated 18% increase [4].  

Twitter is one of the most famous online social networking services, with an 

estimated 310,000,000 monthly visitors and 500 million users worldwide [5]. Within a 

character limit of 140, it allows its users to post their thoughts and opinions, and gives its 

registered users the privilege to read and comment [6]. Twitter provides its users a 

platform to converse on almost every topic known to man, and thus, people started 

discussing their health intentionally or unintentionally as well. This has intrigued many 

researchers to look into the most common diseases people discuss and the scope of the 

possible diagnosis virtually.  
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This study, hence, focuses on a potential system which can help a healthcare 

professional to track his/her patients’ Twitter posts and diagnose diabetes in accordance 

with the symptoms they post, with the help of social network analysis and text analysis. 

 

1.2 SOCIAL MEDIA AND HEALTHCARE: AN OVERVIEW 

Social media is a group of internet-based applications developed using Web 2.0 

technology that offer opportunities for users to generate, share, receive, and comment on 

social content among multiuser through multisensory communication [7, 8, 9, 10, 11]. 

Research has shown that there is a relationship between personality traits and engagement 

with social media [12].  

Social media brings a novel dimension to health care, as it proposes a medium to 

be employed by the public, patients, and health professionals to communicate about 

health issues with the possibility of potentially improving health outcomes. Social media 

is changing the nature and speed of health care interaction between individuals and health 

organizations. The general public, patients, and health professionals are using social 

media to communicate about health issues [13] including health promotion and health 

education [14, 15, 16, 17]. Social media has widened access and increased awareness 

among those who may not easily access health information via traditional methods, such 

as younger people, ethnic minorities, and lower socioeconomic groups [18, 19, 20]. 

Colineau and Paris [21] from their research have reported that people prefer using health-

related social networking sites to discuss sensitive issues and complex information with 

health professionals. One of the advantages of social media is that it lets the health 
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information reach its audience via various other modes than just text; for example, videos 

can be used to replace text and can be useful when literacy is low [22].The very famous 

video sharing website YouTube allows users to share, upload and view videos online for 

free, has been used by the general public to share and learn about medications, 

symptoms, and diagnoses [21] and by patients to share personal cancer stories [23].  

Social media adoption rates have shown variations in accordance to the 

geographic locations; for example, in Europe the percentage of German hospitals using 

social networks are in “single figures”, whereas approximately 45% of Norwegian and 

Swedish hospitals are using LinkedIn, and 22% of Norwegian hospitals use Facebook for 

health communication [24]. In the United States, on the other hand, 61% of adult search 

online and 39% use social media such as Facebook for health information [25]. The 

growth in popularity of social media among the general public has caused the research 

and evolution of many applications within health contexts, ranging from the World 

Health Organization using Twitter during the influenza A (H1N1) pandemic, with more 

than 11,700 followers [26], to medical practices [27], and health professionals obtaining 

information to inform their clinical practice [28, 29].   

There is a range of social media platforms available currently that can facilitate a 

dialogue between patients and health professionals [21, 30]. For example, sites such as 

PatientsLikeMe enable patients to easily converse with others and share health 

information and advice including information on treatment and medication [31, 32]. 

Famous social networking sites such as Twitter and Facebook are being used by the 

general public, patients, and health professionals to share their experience of disease 

management, exploration, and diagnosis [33]. Blog sites create a space where people can 
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access tailored resources [34] and provide health professionals with an opportunity to 

share information with patients and members of the public [35, 21]. Asthma groups are 

using MySpace to share health information, in particular personal stories and experiences 

[36, 37].  

Nowadays, social media is been used by many researchers to collect data on 

patient experiences and opinions such as symptoms, physician’s performance etc. [34, 

38]. With the help of these new modes of interactions, social media can monitor public 

response to health issues [20], track and monitor disease outbreaks [39], identify target 

areas for intervention efforts [40], and disseminate pertinent health information to 

targeted communities [41].  Health professionals can aggregate data about patient 

experiences from blogs and monitor the public reaction to health issues. 

 

1.3 RESEARCH QUESTION AND MAJOR CONTRIBUTIONS 

In the light of the reasons described in section 1, the main research question 

addressed by this thesis is as follows: 

Is it possible to observe diabetes based on text analysis of social media even if 

the individual does not intentionally discuss his/her health? 

While there is a lot of existing work on prediction of seasonal and pandemic 

diseases, to the best of the author’s knowledge, an attempt to diagnose a non-seasonal as 

well as a non-pandemic disease, like diabetes, based on an individual’s post on Twitter 

has never been done before. Considering the fact that non-pandemic diseases are 
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extremely complex due to their similarity of early symptoms with many other diseases, it 

becomes very difficult to possibly predict one without having actually met the patient in 

person [42]. This thesis, therefore, presents an original work with the following as its 

major contributions: 

 Approach to deal with the problem statement: One of the previous works done 

on healthcare and social media includes the prediction of Influenza and Influenza-

like (ILI) activity in the USA, prior to the generation of Control and Prevention 

(CDC) report and the source of the data has been Wikipedia usage and individual 

based tweets.  

Both of the above approaches demonstrate the diagnosis of seasonal and 

pandemic diseases where the trends and estimation of the time period plays an 

important role in the determination [43]. This research, on the other hand, focuses 

on diseases which are not seasonal, yet the individuals who have been diagnosed 

with these diseases have shown similar trends of mentioning the symptoms in their 

tweets. 

 Approach to solve the problem statement: Twitter provides its API (Application 

Programming Interface) to researchers and other web developers, and hence allows 

a web platform to access and share information from one another.  

My approach towards solving this problem involves, with the help of these 

Twitter APIs, collecting all the individual posts, filtered from the IDs based on the 

Twitter search query which involves keywords ‘recently diagnosed’ and ‘diabetes’ 

and then sorting them as cases and then comparing them to a sample of randomly 

selected subset of people without the attribute (the controls) [44]. The entire 
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Twitter history of these individuals was extracted, and a model was developed to 

count the number of times they posted the symptoms (such as sleep, water, eye, 

rash, tired, etc.) related to diabetes [45], which being the early symptoms of 

diabetes, the trends for these symptoms match the curve obtained from searching 

the keyword ‘diabetes’ in Google trends. The more the number of keywords 

mentioned in the posts, over a period of time, the greater the probability of a 

person being possibly diabetic.  

  Diabetes, if known in the early stage, can help to take prior precautions and 

keep the blood sugar level in control: A solution to this problem statement is 

important since it would provide a patient more time, if detected earlier, to control 

diabetes and prevent it from getting worse. 

 

1.4 THESIS ORGANIZATION 

Excluding this section, the remainder of the thesis is organized in the form of four 

sections. 

Section 2 describes the research methodology along with the necessary processes 

and infrastructure used to obtain the outcome from the hypothesis. This section also 

describes the research approach used, by dividing the entire thesis into three phases and 

summarizing each of them. 

Section 3 describes the process used to collect, clean and parse the relevant data. 

This section closes by presenting a detailed account of various statistical insights 

obtained by performing statistical analysis on the extracted data. 
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Section 4 is solely devoted to the main research task of building classification 

classifiers. This section begins with sorting the training data for Naive Bayes classifier 

and then creating the probability table. The later portions of this section describes how to 

build a Random Forest method of classification. The section concludes by presenting 

performance metrics such as the accuracy and precision for the proposed classification 

models. 

Finally, Section 5 concludes the thesis by summarizing all the four sections and 

the results obtained. In addition, several potential approaches are described for improving 

the classification accuracy, intended as a guide to future researchers who wish to extend 

and build on this thesis.  
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2. RESEARCH METHODOLOGY  

This section begins with the description of the types of analysis performed in this 

study along with the detailed description of the necessary research infrastructure. This is 

followed by a brief description of the proposed research methodology. 

 

2.1 FISHER’S EXACT TEST 

Named after its inventor, Sir R. A. Fisher, Fisher’s exact test is a statistical 

significance test used for a 2 X 2 contingency table in order to compare the binomial 

probabilities and to test for independence of 2 classifications. It is believed that Fisher’s 

exact test helps to exactly calculate the deviations from a null hypothesis, independent of 

the sample size or the sample characteristics, hence it falls under the class of exact test. 

Although it is valid for all sample sizes, because of the above grounds, this test is 

preferred when sample sizes are small [46].  The purpose of using the Fisher’s exact test 

is to classify the categorical data in order to determine the significance of contingency 

between them. The null hypothesis for Fisher’s exact test states that assuming each 

observation is classified into exactly one cell and the rows and columns are fixed, the 

comparative proportions of two variables are independent of each other. In simpler terms, 

there is no affiliation between the rows and columns of a 2 X 2 contingency table, such 

that the probability of a subject being in a particular row is not determined by being in a 

particular column [47].  Provided the margins are fixed, the Fisher’s exact test when 

applied to a table with cells a, b, c & d and the marginal totals (a + b), (c + d), (a + c) and 

(b + d): 
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Where  is the binomial coefficient.  

 

2.2 NAIVE BAYES CLASSIFIER  

Descending from the family of simple probabilistic classifiers, Naive Bayes is a 

popular method for text classification i.e. it judges the belonging of documents in their 

respective categories (such as sports or politics, healthy or sick etc.) on the basis of word 

frequencies as the features [48]. Based on the Bayesian theorem, this classifier assumes 

the presence (or absence) of a particular feature of a class is unrelated to the presence (or 

absence) of any other feature. For example, an orange is a fruit with distinctive features 

of orange in color, round and about 4’ in diameter. Now irrespective of other features 

present or the fact that these features may be dependent on each other, a Naive Bayes 

classifier would consider all of these properties to independently contribute to the 

probability that the given fruit is an orange. This type of classifier is henceforth useful in 

medical diagnosis, since it would work very well with diseases showing similar 

symptoms. Further, it is also capable of working well with a small amount of training 

data to estimate the parameters (means and variances of the variables) necessary for 

classification. Other advantages of using Naive Bayes classifier include its non-

sensitivity to irrelevant features, its capability to handle real, discrete and streaming data 
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and most importantly it is fast to train and classify. Naive Bayes classifier is particularly 

suited when the dimensionality of the input is higher. Parameter estimation of this model 

uses the method of maximum likelihood [49].  

 

 P(c|x) is the posterior probability of class (target) given predictor (attribute).  

 P(c) is the prior probability of class.  

 P(x|c) is the likelihood which is the probability of predictor given class.  

 P(x) is the prior probability of predictor. [14] 

 

2.3 RANDOM FOREST 

Random forest is an ensemble learning method developed by Leo Breiman and 

Adele Cutler [50], which during its training period constructs a magnitude of decision 

trees and outputs the resultant mode of the classes (classification) or mean prediction 

(regression) of the individual trees. Dietterich first came up with the idea of randomized 

node optimization, where instead of deterministic optimization, a randomized procedure 
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was used to select decisions from each node. Usually used for classification and 

regression, this method is better than the decision trees since they do not over fit their 

training data by providing too many parameters relative to the number of observations 

[50]. Unlike the standard tree methods of classification, in the case of random forest 

method, the best among a subset of predictions are chosen randomly to split each node 

[51]. This method is considered to be more user-friendly since it has only two parameters 

(the number of variables in the random subset at each node and the number of trees in the 

forest), and is usually not very sensitive to their values. The concept behind this method 

is growing a forest of trees and inducing the variation among the trees by projecting the 

training data into a randomly chosen subspace before fitting with each other. It averages 

multiple deep decision trees during this process with an intention to reduce the variance 

and during this it also boosts the performance of the final model [52]. An estimate of the 

error rate can be obtained based on the training data by calculating the out-of-bag error.  

Out-of-bag error 

While in the process of retaining the training set by sampling with replacement 

for the current tree, about one-third of the cases are left out of the sample and not used in 

the construction of the kth tree. This left out data is termed as out-of-bag data and is 

utilized to get an unbiased estimation of the classification error as the trees are added to 

the forest. Once the tree is built, the entire set of data is made to go through the tree and 

in the meanwhile the proximities for each pair cases are computed. The proximity 

increases by one if any of the two cases occupy the same terminal node. The proximities 

are then normalized in the end by dividing with the number of trees. Now, let us consider 

j is a class that scored more points every time case n was out of the bag. Thus, the 
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proportion of the time that j doesn’t match with the class of n averaged over all cases is 

the out-of-bag error estimate [51, 52]. 

 

2.4 RESEARCH APPROACH 

This thesis is accomplished by a three phase procedure. 

 Phase I - Data collection from social network analysis: A Twitter search query, 

including keywords, “diagnosed, diabetes” is used to search for all the Twitter IDs 

of people who posted about being diagnosed with diabetes. These IDs were then 

filtered to find out only those prospects who posted about being diagnosed 

recently. The resultant Twitter IDs were made to pass through a Java program, 

which would process posts of each ID, one at a time and count the number of 

times the symptoms of diabetes have been mentioned in the past. 

 Phase II - Data preprocessing and statistical analysis: Fisher’s exact test was 

used to find the similarity between the symptoms, used as the keywords for 

selecting the prospective Twitter profiles, and diabetes. The Twitter profiles were 

narrowed down on the basis of these keywords used in the posts along with a 

mention of being diagnosed with diabetes. 

 Phase III - Diabetes classification using Machine Learning Techniques: 

Leveraging on the statistical insights from phase II, two machine learning 

techniques (Random Forest classification method & Naive Bayes’ classifier) will 

be employed to perform diabetes classification. 
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3. TWITTER DATA PROCESSING 

This section provides a detailed explanation of the data collection from Twitter, 

data processing and statistical analysis over the collected data. The analysis of the posts 

on Twitter used to determine the symptoms of diabetes consists of the following steps: 

1. Collection of tweets. 

2. Cleaning and parsing of data. 

3. Conducting statistical analysis of the extracted data. 

 

3.1 COLLECTION OF TWEETS 

Twitter welcomes developers to explore its platform for research purposes. An 

unofficial Java library for the Twitter Application Program Interface (Twitter API), 

provides application automation so that it can be integrated with Twitter. A few 

healthcare professionals were contacted and consulted in order to have a better 

understanding about diabetes and its early symptoms. Tweets were collected on the basis 

of the symptoms suggested by the physicians. A keyword strategy was adopted for the 

collection purposes. The following symptoms were derived from the discussions: 

sleeping disorder, obesity, water loss in the body, susceptibility to heat, and the 

redundant need of eating food. From these early symptoms, the following keywords 

were then derived: sleep, weight, water, heat, hungry; and these keywords were looked 

up in the Twitter search to find the IDs of people who have posted the same keywords in 

the past along with the phrases ‘recently diagnosed’ and ‘diabetes’. Only those prospects 

who have mentioned at least 2 or more symptoms in their Twitter posts (for accuracy 
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purpose, mentions of minimum two symptoms were looked up) along with the mention 

of being recently diagnosed with diabetes, were taken into account and then passed 

though the Java code to count the number of times these symptoms were posted and the 

dates of their postings. A sample of tweets collected, where users have unintentionally 

tweeted their symptoms and with time, eventually mentioned about diagnosed diabetic, 

are shown in Table 3.1. 

Table 3.1. Sample Tweets Collected 

S. 

No. 

Date Tweet 

1. Mon Apr 14 12:12:57 CDT 2014 

 

Hurting, need more sleep 

 

Mon Jul 21 01:58:04 CDT 2014 

 

Finally ate something today, but I did drink 

a lot of water, as always 

Wed Jul 30 21:55:29 CDT 2014 

 

I wilt in this heat 

 

Sun Jul 20 17:55:37 CDT 2014 I am so hungry, having a :( kinda day. 

Fri Sep 12 00:57:28 CDT 2014 Kinda like my name:) This diabetes sight 

has some great quotes. Recently found it, 

and was recently diagnosed. 
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2. Sun Mar 03 17:45:55 CST 2013 Sleep, who needs it sef. Back in the groove 

 Wed Jun 05 23:15:29 CDT2013 My weight loss journey started on Monday 

Fri Aug 23 09:52:32 CDT 2013 Why y run? Couldn't stand the heat 

Wed Aug 13 00:06:35 CDT2014 Recently diagnosed with diabetes, this 

story scares me 

3. Sat Aug 02 02:24:30 CDT 2014 Okay for real, someone please 

pray/will/voodoo me to sleep. 

Wed Sep 24 23:09:42 CDT 2014 

 

So either I freeze to death tonight or I die of 

heat exhaustion. Either way, I will not live 

to see 8 am. 

Mon Sep 15 11:18:20 CDT 2014 Love feeling so hungry and nauseous at the 

same time. 

Fri Oct 17 19:18:36 CDT 2014 I was recently diagnosed with diabetes so I 

am trying to be good. 

 

 The results from the execution of the search query included both relevant and 

irrelevant accounts (such as the accounts by diabetes community, diabetes association 

and some by the nurses or diabetes physicians). The accounts which were irrelevant were 

Table 3.1. Sample Tweets Collected (cont.) 
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discarded and only the potential accounts were taken into consideration. Out of 30 

potential Twitter IDs obtained, 20 had claimed to have been recently diagnosed with 

diabetes, and the rest 10, even though they mentioned the symptoms but were not diabetic 

or claimed to have diagnosed. These 30 Twitter IDs were hence taken into consideration 

and further analysis was performed on them.  

 

3.2 CLEANING AND PARSING DATA 

All the tweets obtained were parsed before Fisher’s exact test was conducted. The 

procedure for parsing included the following steps: 

1. Individual terms in a tweet were separated according to the white space 

boundaries. 

2. The tweets were then converted into lower case letters. 

3. Finally, all the non-alpha numeric characters were removed from tweets 

(e.g., hash signs and dashes). 

After parsing the tweets, a count function was used to count the number of times 

the keywords were used by each user in his/her posts. This helped to sort the Twitter IDs 

confidently according to their relevancy.  

 

3.3 CONDUCTING STATISTICAL ANALYSIS  

Fisher’s exact test was used to analyze the statistical significance of the 

contingency table with a primary goal to find out the trends. Fisher’s exact test is applied 
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to the derived keywords to assess if each keyword and ‘diabetes’ exhibit similar trends. 

The results showed that the keywords sleep, as shown in Figure 3.1, water, as shown in 

Figure 3.2, rash, as shown in Figure 3.3, and tired, as shown in Figure 3.4, show similar 

trends as diabetes. Other keywords like heat, hungry and itch, do not show similar trends 

as diabetes, but they are commonly found in the Twitter posts of those who possibly have 

diabetes.  

The data for diabetes and the corresponding keywords are collected for the years 

2009 – 2013 and because of the space constraints, limited data can be viewed in the 

following screenshots. 

The results are as follows: 

 

Figure. 3.1. Fisher’s Exact Test For Diabetes & Sleep 
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Figure. 3.2. Fisher’s Exact Test For Diabetes & Water 

 

Figure. 3.3. Fisher’s Exact Test For Diabetes & Rash 
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Figure. 3.4. Fisher’s Exact Test For Diabetes & Tired 

In all the above cases, one cannot reject the null hypothesis, and therefore, it can 

be concluded that these keywords show a similar trend as ‘diabetes’. 
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4. MACHINE LEARNING TECHNIQUE AND RESULTS 

In this section, an overview of the supervised machine learning technique used for 

classification is described. The parsed data is analyzed to classify a user as being sick or 

not. 

 

4.1 NAIVE BAYES CLASSIFIER 

Naive Bayes classifier assumes that all the features are independent of each other 

i.e. the presence (or absence) of a particular feature of a class is unrelated to the presence 

(or absence) of any other feature. Henceforth, this classifying technique is used to 

determine on the basis of the training data, if it can predict diabetes in the testing data 

confidently. Naive Bayes classifier formula is applied as discussed in Section 2.2 to the 

training data, as shown in Table 4.1, and perform the computations as in Table 4.2. 

Table 4.1. Training Data For Naive Bayes Classifier 

Sleep Water  Weight Heat Hungry Diabetes 

Yes No No Yes No Yes 

Yes Yes No Yes Yes Yes 

Yes No No Yes Yes Yes 

Yes No Yes No No Yes 

Yes Yes Yes Yes Yes Yes 

Yes Yes No Yes Yes Yes 

Yes No No Yes No Yes 
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Yes Yes Yes Yes Yes Yes 

No Yes No Yes No Yes 

Yes Yes Yes Yes Yes Yes 

Yes No Yes No No Yes 

Yes Yes No No No Yes 

Yes Yes Yes Yes No Yes 

Yes Yes Yes Yes Yes Yes 

Yes Yes Yes Yes No Yes 

Yes Yes Yes Yes Yes Yes 

Yes Yes Yes Yes Yes Yes 

Yes Yes Yes Yes Yes Yes 

Yes Yes Yes Yes Yes Yes 

Yes Yes No Yes Yes Yes 

Yes No No Yes No No 

Yes Yes No Yes No No 

No Yes Yes Yes No No 

No No No No No No 

Yes Yes No Yes Yes No 

Yes Yes Yes Yes Yes No 

Yes Yes Yes Yes Yes No 

Yes Yes Yes Yes Yes No 

Yes No No No No No 

No No No No No No 

Table 4.1. Training Data For Naive Bayes Classifier (cont.) 
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Table 4.2. Probability Table From Training Data           

P (Diabetes=yes) = 0.66 P (Diabetes=no) = 0.33 

P (Sleep=yes | Diabetes=yes) = 0.95 P (Sleep=yes | Diabetes=no) = 0.7 

P (Sleep=no | Diabetes=yes) = 005 P (Sleep=no | Diabetes=no) = 0.33 

P (water=yes | Diabetes=yes) = 0.7 P (water=yes | Diabetes=no) = 0.6 

P (water=no | Diabetes=yes) = 0.25 P (water=no | Diabetes=no) = 0.4 

P (weight=yes | Diabetes=yes) = 0.6 P (weight=yes | Diabetes=no) = 0.4 

P (weight=no | Diabetes=yes) = 0.4 P (weight=no | Diabetes=no) = 0.6 

P (Heat=yes | Diabetes=yes) = 0.85 P (Heat=yes | Diabetes=no) = 0.7 

P (Heat=no | Diabetes=yes) = 0.15 P (Heat=no | Diabetes=no) = 0.3 

P (Hungry=yes | Diabetes=yes) = 0.6 P (Hungry=yes | Diabetes=no) = 0.4 

P (Hungry=no | Diabetes=yes) = 0.4 P (Hungry=no | Diabetes=no) = 0.6 

 

The sample/testing data is as follows: 

Weight = No, Sleep = Yes, Water = Yes, Heat = Yes, Hungry = Yes 

It is known that this sample mentioned about testing positive for diabetes in 

his/her posts, but in order to check if the classifier works as expected, the above 

probability values for each keyword/symptom obtained from the training data, is used to 

verify the probability of diabetes in the new sample. 
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Thus, according to the Naive Bayes’ classifier formula: 

P (Diabetes=yes) = [P (weight=no | Diabetes=yes) * P (Sleep=yes | Diabetes=yes) 

* P (water=yes | Diabetes=yes) * P (Heat=yes | Diabetes=yes) * P (Hungry=yes | 

Diabetes=yes)] * P (Diabetes=yes)  

P (Diabetes=yes) = 0.4 * 0.95 * 0.7 * 0.85 * 0.6 * 0.66 

      = 0.0895  

       ≈ 0.1 

P (Diabetes=no) = [P (weight=no | Diabetes=no) * P (Sleep=yes | Diabetes=no) * 

P (water=yes | Diabetes=no) * P (Heat=yes | Diabetes=no) * P (Hungry=yes | 

Diabetes=no)] * P (Diabetes=no) 

P (Diabetes=no) = 0.6 * 0.7 * 0.6 * 0.7 * 0.4 * 0.33 

   = 0.0232 

Since the probability of Diabetes = yes is more than that for Diabetes = no, hence 

it can be concluded that this particular prospect is more probable to be diabetic. 

Similarly, computations are performed for other newly discovered twitter results 

to predict if the prospect is diabetic or not. 
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4.2 RANDOM FOREST METHOD OF CLASSIFICATION 

Random Forest method of classification was used to create a pattern recognition 

and prediction on the basis of the trained data. Following steps led to creation of random 

forest architecture using Matlab:  

Firstly, the training set of data is taken into account by the algorithm. 

 Clustering of the trained data sets into groups and subgroups is done and 

the structure would look similar to that of a tree called a decision tree. 

Clusters at each node are chosen randomly by the program to judge the 

relationship between the data points. 

 A forest is formed by counting multiple trees and each tree is different in 

the forest because of the randomness of the variables chosen. 

 The dataset except for the training dataset is used to classify the data 

points for the new dataset. 

 The tree which the maximum prediction number is considered and shown 

as the output by the random forest algorithm [53]. 

The results obtained after running the Matlab code for Random forest is a plot of 

out-of-bag error over the number of grown classification trees, as shown in Figure 4.1. As 

the number of trees grown increases the out-of-bag error should decrease, if the result is 

close to accurate.
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Figure. 4.1. Out-of-bag v/s Number Of Trees Grown Plot 

From the plot obtained it can be seen that the out-of-bag error eventually 

decreases with the number of trees grown depicting the fall in generalization error. 
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5. CONCLUSION 

The study began with the following premise: 

Is it possible to observe diabetes based on text analysis of social media even if 

the individual does not intentionally discuss his/her health? 

As evidenced by the results provided in the study, a non-pandemic disease like 

diabetes can be diagnosed in its early stages by analyzing the posts on social networking 

sites. There have been other approaches to diagnose a non-pandemic or a non-seasonal 

disease before, however, they have been developed in medical settings. This raised a 

question if such diseases can be diagnosed without any physical check-up of the person 

and without spending time waiting for the disease to aggravate. While the focus has been 

laid only on diabetes in general, and not its two categories – Type 1 and Type 2, these 

methods can also be applied to diseases such as cancer, which has been one of the leading 

causes of death among people due to the lack of prior knowledge. This could result in 

serious social and economic effects. Since people now-a-days have become more 

acquainted to social media and prefer discussing about their on-goings with everyone 

they know and are also open about sharing their thoughts and opinions with others 

looking for some healthy discussions, these methods of diagnosis have henceforth 

become more convenient and accurate. In conclusion, the study demonstrates the 

feasibility of diagnosing diabetes on the basis of text analysis.  
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6. FUTURE WORK 

The work presented in this thesis is barely the tip of an iceberg. This section 

describes a few approaches that can potentially be used to improve the classification 

accuracy. It is intended as a guide for future researchers who wish to extend and build on 

this thesis. Few of the avenues for improvement include: 

 Larger Data Samples: The first and most obvious improvement of all is to 

collect more number of data. In this thesis, a total of 30 Twitter IDs were 

considered. One of the immediate tasks is to increase the number of samples and 

reassess the reliability of the framework. 

 Additional Control Factors: Data can be collected from other sites, for example 

Facebook, Instagram, etc., as well in order to assess the pattern. With additional 

attributes such as geographic locations, ethnicity, age etc., more fine grained 

statistical insights can be gained. 

 Automated Feature Extraction: As feature extraction is crucial for supervised 

learning models, it might be beneficial to investigate the possibility of automating 

the feature extraction process using sentiment analysis. Use of natural language 

processing and computational linguistics to extract subjective information in 

source materials would reduce the human involvement for analyzing the tweets 

and hence provide homogenous results. 
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APPENDIX A 

JAVA CODE TO COUNT THE WORDS 
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package diabetesData; 

import java.io.BufferedReader; 

import java.io.DataInputStream; 

import java.io.FileInputStream; 

import java.io.FileNotFoundException; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.util.ArrayList; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.HashMap; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

import java.util.StringTokenizer; 

import java.util.Map.Entry; 

 

public class MaxDuplicateWordCount { 

 

public Map<String, Integer> getWordCount(String fileName){ 

 

FileInputStream fis = null; 

DataInputStream dis = null; 
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BufferedReader br = null; 

Map<String, Integer> wordMap = new HashMap<String, Integer>(); 

try { 

fis = new FileInputStream(fileName); 

dis = new DataInputStream(fis); 

br = new BufferedReader(new InputStreamReader(dis)); 

String line = null; 

while((line = br.readLine()) != null){ 

StringTokenizer st = new StringTokenizer(line, " "); 

while(st.hasMoreTokens()){ 

String tmp = st.nextToken().toLowerCase(); 

if(wordMap.containsKey(tmp)){ 

wordMap.put(tmp, wordMap.get(tmp)+1); 

} else { 

wordMap.put(tmp, 1); 

} 

} 

} 

} catch (FileNotFoundException e) { 

e.printStackTrace(); 

} catch (IOException e) { 

e.printStackTrace(); 

} finally{ 
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try{if(br != null) br.close();}catch(Exception ex){} 

} 

return wordMap; 

} 

 

public List<Entry<String, Integer>> sortByValue(Map<String, Integer> 

wordMap){ 

 

Set<Entry<String, Integer>> set = wordMap.entrySet(); 

List<Entry<String, Integer>> list = new ArrayList<Entry<String, 

Integer>>(set); 

Collections.sort( list, new Comparator<Map.Entry<String, Integer>>() 

{ 

public int compare( Map.Entry<String, Integer> o1, Map.Entry<String, 

Integer> o2 ) 

{ 

return (o2.getValue()).compareTo( o1.getValue() ); 

} 

} ); 

return list; 

} 

public static void main(String a[]){ 

MaxDuplicateWordCount mdc = new MaxDuplicateWordCount(); 
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Map<String, Integer> wordMap = 

mdc.getWordCount("C:/TheDiabeticDr2479888794.txt"); 

List<Entry<String, Integer>> list = mdc.sortByValue(wordMap); 

for(Map.Entry<String, Integer> entry:list){ 

System.out.println(entry.getKey()+" ==== "+entry.getValue()); 

} 

} 
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APPENDIX B 

RAW DATA USED FOR THE FISHER’S EXACT TEST 
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Month Diabetes    Sleep   Water    Rash    Tired 

Jan-09 66 66 53 55 59 

Feb-09 71 66 55 55 67 

Mar-09 76 69 57 57 76 

Apr-09 72 65 60 61 81 

May-09 71 67 59 66 79 

Jun-09 67 64 62 68 78 

Jul-09 64 67 61 70 77 

Aug-09 64 68 60 67 73 

Sep-09 66 66 54 59 70 

Oct-09 67 68 52 55 66 

Nov-09 75 67 51 54 70 

Dec-09 61 66 47 53 60 

Jan-10 66 78 52 53 68 

Feb-10 70 73 54 55 73 

Mar-10 73 73 56 56 77 

Apr-10 71 71 57 63 85 

May-10 67 70 60 67 79 

Jun-10 65 66 62 75 87 

Jul-10 62 75 67 81 85 

Aug-10 63 78 62 73 79 

Sep-10 66 86 57 64 82 

Oct-10 67 79 54 61 71 

Nov-10 73 75 51 55 73 

Dec-10 58 75 51 58 62 

Jan-11 66 82 55 60 75 

Feb-11 66 76 55 61 73 

Mar-11 69 77 57 62 86 

Apr-11 67 78 61 69 95 

May-11 66 80 64 70 93 

Jun-11 61 83 68 79 100 

Jul-11 61 83 68 84 94 

Aug-11 61 83 63 71 81 

Sep-11 67 82 57 68 74 

Oct-11 67 81 55 64 68 

Nov-11 75 83 54 64 67 

Dec-11 61 80 50 61 61 

Jan-12 57 87 56 66 74 

Feb-12 70 87 58 69 82 

Mar-12 72 84 58 73 86 

Apr-12 68 83 61 75 92 

May-12 70 82 66 85 90 

Jun-12 63 83 66 84 85 
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Jul-12 63 86 70 92 83 

Aug-12 65 89 67 87 82 

Sep-12 66 87 60 74 76 

Oct-12 66 84 56 66 72 

Nov-12 71 83 54 65 66 

Dec-12 56 82 51 65 61 

Jan-13 63 91 59 69 69 

Feb-13 68 86 59 67 75 

Mar-13 68 90 60 72 79 

Apr-13 71 86 63 79 83 

May-13 68 85 66 83 82 

Jun-13 66 88 69 88 79 

Jul-13 64 89 72 94 74 

Aug-13 64 95 68 87 77 

Sep-13 67 93 62 75 70 

Oct-13 71 92 58 69 72 

Nov-13 75 91 58 68 67 

Dec-13 60 90 56 67 57 
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APPENDIX C 

MATLAB CODE USED FOR RANDOM FOREST CLASSIFICATION 
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% Since TreeBagger uses randomness different results can be expected each 

% time the program is run. 

% This makes sure that the results obtained are same every time the code is run. 

rng default 

BaggedEnsemble = TreeBagger(60,cali,classLabels,'OOBPred','On') 

% Here some training data is created. 

% The rows&lt; represent the samples or individuals. 

% The first two columns represent the individual's features. 

% The last column represents the class label  

trainData = [ ... 

[1,  1,  0,  1,  1,  1]; 

[1,  1,  1,  1,  1,  1]; 

[1,  1,  1,  0,  1,  1]; 

[1,  1,  1,  0,  1,  1]; 

[1,  1,  1,  1,  1,  1]; 

[1,  1,  0,  0,  1,  1]; 

[1,  1,  1,  1,  1,  1]; 

[0,  0,  0,  0,  0,  0]; 

[1,  1,  0,  1,  1,  1]; 

[1,  1,  0,  1,  1,  1]; 

[1,  0,  0,  0,  1,  0]; 

[1,  1,  1,  1,  1,  1]; 

[0,  0,  0,  0,  0,  0]; 
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[1,  1,  1,  1,  1,  1]; 

[1,  1,  1,  1,  1,  1]; 

[1,  1,  1,  0,  1,  1]; 

[1,  1,  0,  0,  0,  1]; 

[1,  1,  0,  1,  1,  0]; 

[1,  1,  1,  1,  1,  0]; 

[1,  1,  1,  1,  1,  0]; 

[1,  1,  1,  1,  1,  1]; 

[1,  1,  1,  1,  1,  0]; 

[0,  1,  0,  0,  0,  1]; 

[1,  0,  0,  0,  0,  1]; 

[1,  0,  0,  0,  1,  0]; 

[1,  1,  0,  0,  1,  0]; 

[1,  0,  0,  0,  1,  0]; 

[0,  1,  1,  0,  1,  0]; 

[1,  1,  1,  0,  1,  0]; 

[1,  0,  0,  1,  0,  0]; 

]; 

cali = trainData(:,(1:5)) 

classLabels = trainData(:,6) 

% How many trees do you want in the forest? 

nTrees = 50 

% Train the TreeBagger (Decision Forest). 
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B = TreeBagger(nTrees,cali,classLabels, 'Method', 'classification'); 

% Given a new individual WITH the features and WITHOUT the class label, 

newData1 = [1,  1,  1,  1,  0]; 

% Use the trained Decision Forest. 

predChar1 = B.predict(newData1);% Predictions is a char though.  

predictedClass = str2double(predChar1) 

oobErrorBaggedEnsemble = oobError(BaggedEnsemble); 

plot(oobErrorBaggedEnsemble) 

xlabel 'Number of grown trees'; 

ylabel 'Out-of-bag classification error'; 
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APPENDIX D 

JAVA CODE TO GET USER STATUS 

(By, Raja Ashok Bolla) 
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/** 

 * This Class is used to get the list of status. 

 */ 

package FarheenTweetsPack; 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.util.ArrayList; 

import java.util.List; 

import com.data.region.trending.AllKeys; 

import twitter4j.PagableResponseList; 

import twitter4j.Paging; 

import twitter4j.ResponseList; 

import twitter4j.Status; 

import twitter4j.Twitter; 

import twitter4j.TwitterException; 

import twitter4j.TwitterFactory; 

import twitter4j.User; 

import twitter4j.conf.ConfigurationBuilder; 
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public class GetUserStatus { 

static String ckey = "BQMS6OKOPQgjhQUUo8TmXcigU"; 

static String cSecret = 

"Kpz8CVEmllp2aQ5mXZa6vZB7jxOupVP7GrcsNs5w1q41EPQZ01"; 

static String tKey = "282016016-

o1dfgiPLYWUepFAqnUK1ZZY4EHlQuZ3KzxD9IdAL"; 

static String tSecret = "FYUlc73WlO7TeGFDpo6oj68KdVQRdLrzYRhps7kWsPcFk"; 

static Twitter twitter; 

@SuppressWarnings("unchecked") 

public static void main(String[] args) throws IOException, TwitterException { 

ConfigurationBuilder cb = new ConfigurationBuilder(); 

cb.setDebugEnabled(true).setOAuthConsumerKey(ckey) 

.setOAuthConsumerSecret(cSecret).setOAuthAccessToken(tKey) 

.setOAuthAccessTokenSecret(tSecret); 

// FileWriter outFile1 = new FileWriter("Tweets123.txt", true); 

// try { 

TwitterFactory factory = new TwitterFactory(cb.build()); 

twitter = factory.getInstance(); 

ResponseList<User> users = null; 

String[] srch_ids = loadUserIDs(); 

int count = 0; 

for (String s : srch_ids) { 

if (s == null) 
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System.exit(0); 

String[] srch = new String[] { s }; 

try { 

users = twitter.lookupUsers(srch); 

} catch (TwitterException tee) { 

if (tee.toString().contains("Could not authenticate you")) { 

System.out 

.println("##################Junk ID########################" 

+ s); 

try { 

// Introduced delay of 15 minutes due to Twitter 

// Limitations 

Thread.sleep(15 * 60 * 1000); 

} catch (InterruptedException e1) { 

// TODO Auto-generated catch block 

e1.printStackTrace(); 

} 

users = twitter.lookupUsers(srch); 

} 

} 

for (User user : users) { 

String uName = user.getScreenName().toString(); 

// Folder to store the extracted tweets 
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// Username is generally the name of the file 

File f = new File("FarheenTweets/" + uName + ".txt"); 

FileWriter outFile1 = new FileWriter(f, true); 

PrintWriter out1 = new PrintWriter(outFile1); 

// System.out.println(user.getName() + "  :  "); 

long cursor = -1; 

Paging paging = new Paging(1); 

ArrayList<Status> tweets = null; 

// PagableResponseList<User> followers; 

search: do { 

System.out.println(count + " : " + uName); 

count++; 

try { 

tweets = (ArrayList<Status>) twitter.getUserTimeline( 

uName, paging); 

} catch (Exception e) { 

if (e.toString().contains("Rate limit exceeded")) { 

// Handling of Rate Limit Exception 

try { 

Thread.sleep(15 * 60 * 1000); 

} catch (InterruptedException e1) { 

// TODO Auto-generated catch block 

e1.printStackTrace(); 
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} 

try { 

tweets = (ArrayList<Status>) twitter 

.getUserTimeline(uName, paging); 

} catch (Exception e1) { 

if (e1.toString().contains( 

"Rate limit exceeded")) { 

try { 

Thread.sleep(15 * 60 * 1000); 

} catch (InterruptedException e2) { 

// TODO Auto-generated catch block 

e2.printStackTrace(); 

} 

} else  

{ 

break search; 

} 

} 

} else { 

break search; 

} 

} 

if (tweets == null) 
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break search; 

for (Status message : tweets) { 

// Writing the timestamped tweets in the file 

out1.write(message.getCreatedAt() + " Msg : " 

+ message.getText()); 

out1.write("\n"); 

} 

paging.setPage(paging.getPage() + 1); 

} while (tweets.size() > 0 && paging.getPage() < 40); 

out1.close(); 

} 

} 

} 

private static String[] loadUserIDs() { 

String[] ids = new String[50912]; 

int count = 0; 

FileReader fr; 

try { 

// A place where application looks up for names of the users to 

// search the tweets 

fr = new FileReader(new File("Training//farheenids.txt")); 

BufferedReader br = new BufferedReader(fr); 

String thisLine; 
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String[] toks; 

while ((thisLine = br.readLine()) != null) { 

ids[count] = thisLine; 

count++; 

} 

} catch (FileNotFoundException e) { 

e.printStackTrace(); 

} catch (IOException e) { 

e.printStackTrace(); 

} 

return ids; 

} 

} 
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